Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 618
Filtrar
1.
J Hazard Mater ; 470: 134304, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38615650

RESUMO

In lightly polluted water containing heavy metals, organic matter, and green microalgae, the molecular weight of organic matter may influence both the growth of green microalgae and the concentration of heavy metals. This study elucidates the effects and mechanisms by which different molecular weight fractions of fulvic acid (FA), a model dissolved organic matter component, facilitate the bioaccumulation of hexavalent chromium (Cr(VI)) in a typical green alga, Chlorella vulgaris. Findings show that the addition of FA fractions with molecular weights greater than 10 kDa significantly enhances the enrichment of total chromium and Cr(VI) in algal cells, reaching 21.58%-31.09 % and 16.17 %-22.63 %, respectively. Conversely, the efficiency of chromium enrichment in algal cells was found to decrease with decreasing molecular weight of FA. FA molecular weight within the range of 0.22 µm-30 kDa facilitated chromium enrichment primarily through the algal organic matter (AOM) pathway, with minor contributions from the algal cell proliferation and extracellular polymeric substances (EPS) pathways. However, with decreasing FA molecular weight, the AOM and EPS pathways become less prominent, whereas the algal cell proliferation pathway becomes dominant. These findings provide new insights into the mechanism of chromium enrichment in green algae enhanced by medium molecular weight FA.


Assuntos
Benzopiranos , Chlorella vulgaris , Cromo , Microalgas , Peso Molecular , Poluentes Químicos da Água , Cromo/metabolismo , Cromo/química , Chlorella vulgaris/metabolismo , Chlorella vulgaris/crescimento & desenvolvimento , Chlorella vulgaris/efeitos dos fármacos , Poluentes Químicos da Água/metabolismo , Microalgas/metabolismo , Microalgas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Benzopiranos/química , Benzopiranos/metabolismo
2.
Nat Commun ; 15(1): 3539, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670975

RESUMO

Bergenin, a rare C-glycoside of 4-O-methyl gallic acid with pharmacological properties of antitussive and expectorant, is widely used in clinics to treat chronic tracheitis in China. However, its low abundance in nature and structural specificity hampers the accessibility through traditional crop-based manufacturing or chemical synthesis. In the present work, we elucidate the biosynthetic pathway of bergenin in Ardisia japonica by identifying the highly regio- and/or stereoselective 2-C-glycosyltransferases and 4-O-methyltransferases. Then, in Escherichia coli, we reconstruct the de novo biosynthetic pathway of 4-O-methyl gallic acid 2-C-ß-D-glycoside, which is the direct precursor of bergenin and is conveniently esterified into bergenin by in situ acid treatment. Moreover, further metabolic engineering improves the production of bergenin to 1.41 g L-1 in a 3-L bioreactor. Our work provides a foundation for sustainable supply of bergenin and alleviates its resource shortage via a synthetic biology approach.


Assuntos
Benzopiranos , Vias Biossintéticas , Escherichia coli , Engenharia Metabólica , Benzopiranos/metabolismo , Benzopiranos/química , Engenharia Metabólica/métodos , Escherichia coli/metabolismo , Escherichia coli/genética , Glicosiltransferases/metabolismo , Metiltransferases/metabolismo , Ácido Gálico/metabolismo , Ácido Gálico/química , Reatores Biológicos , Glicosídeos/biossíntese , Glicosídeos/metabolismo , Glicosídeos/química
3.
Eur J Med Chem ; 262: 115878, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37866337

RESUMO

A new type of benzopyrone-mediated quinolones (BMQs) was rationally designed and efficiently synthesized as novel potential antibacterial molecules to overcome the global increasingly serious drug resistance. Some synthesized BMQs effectively suppressed the growth of the tested strains, outperforming clinical drugs. Notably, ethylidene-derived BMQ 17a exhibited superior antibacterial potential with low MICs of 0.5-2 µg/mL to clinical drugs norfloxacin, it not only displayed rapid bactericidal performance and inhibited bacterial biofilm formation, but also showed low toxicity toward human red blood cells and normal MDA-kb2 cells. Mechanistic investigation demonstrated that BMQ 17a could effectually induce bacterial metabolic disorders and promote the enhancement of reactive oxygen species to disrupt the bacterial antioxidant defense system. It was found that the active molecule BMQ 17a could not only form supramolecular complex with lactate dehydrogenase, which disturbed the biological functions, but also effectively embed into calf thymus DNA, thus affecting the normal function of DNA and achieving cell death. This work would provide an insight into developing new molecules to reduce drug resistance and expand antibacterial spectrum.


Assuntos
Antibacterianos , Quinolonas , Humanos , Antibacterianos/farmacologia , DNA Girase/metabolismo , Testes de Sensibilidade Microbiana , Norfloxacino/farmacologia , Quinolonas/farmacologia , Quinolonas/metabolismo , Benzopiranos/metabolismo , Benzopiranos/farmacologia
4.
J Agric Food Chem ; 71(23): 8959-8968, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37278378

RESUMO

Xenocoumacin 1 (Xcn1) is an excellent antimicrobial natural product against Phytophthora capsici. However, the commercial development of Xcn1 is hindered by the low yield, which results in high application costs. In this study, multiple metabolic strategies, including blocking the degradation pathway, promoter engineering, and deletion of competing biosynthetic gene clusters, were employed to improve the production of Xcn1, which was increased from 0.07 to 0.91 g/L. The formation of Xcn1 reached 1.94 g/L in the TB medium with the final strain T3 in a shake flask and further reached 3.52 g/L in a 5 L bioreactor, which is the highest yield ever reported. The engineered strain provides a valuable platform for production of Xcn1, and the possible commercial development of the biofungicide. We anticipate that the metabolic engineering strategies utilized in this study and the constructed constitutive promoter library can be widely applied to other bacteria of the genera Xenorhabdus and Photorhabdus.


Assuntos
Anti-Infecciosos , Xenorhabdus , Xenorhabdus/genética , Anti-Infecciosos/metabolismo , Benzopiranos/metabolismo , Reatores Biológicos/microbiologia
5.
J Agric Food Chem ; 71(11): 4615-4624, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36945879

RESUMO

Phaeosphaeria sp., a lichen-associated fungus, produced six skeletally new dimeric spiciferones (1-6) and four known metabolites (7-10). The new structures were elucidated by spectroscopic analysis, and their absolute configurations were determined by electronic circular dichroism calculations. Compounds 1 and 3-6 represent the first examples of ethylidene-bridged dimers from the building blocks 4H-chromene-4,7(8H)-dione and α-pyrone, and 2 is a unique homodimer of spiciferone. Compounds 1, 2, and 5-9 significantly inhibited the growth of weed-like dicot Arabidopsis thaliana at 100.0 µM. Notably, 8 showed the strongest inhibitory activity against the fresh weight and root elongation of A. thaliana with the IC50 values of 32.04 and 26.78 µM, respectively, whereas 1, 8, and 9 stimulated the growth of A. thaliana at lower concentrations. Meanwhile, compounds 2 and 6 exhibited weak inhibitory effects on the root elongation of monocot rice, while 1 and 8 exhibited growth-promoting effects on the shoot and root elongation of rice in a roughly dose-dependent manner.


Assuntos
Arabidopsis , Ascomicetos , Pironas/química , Benzopiranos/farmacologia , Benzopiranos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Ascomicetos/química , Estrutura Molecular
6.
Eur J Med Chem ; 244: 114813, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36219902

RESUMO

In search of novel osteogenic entities, a series of twenty-seven quinazolinone-benzopyran-indole hybrids were designed and synthesized using molecular hybridization approach. All the compounds were scrutinized for their osteogenic potential, primarily based on alkaline phosphatase assay as one of the major anabolic markers. From the primary screening, four osteogenic compounds were sorted from the series and were found nontoxic to the osteoblasts. Further, increased osteoblast differentiation and osteogenic mRNA upregulations suggest compound 47 as the most potent osteoanabolic agent. Immunoblot and ELISA analysis demonstrated that compound 47 promotes osteogenesis via RUNX2 and BMP2 mediated non-canonical p38 pathway. In vivo studies in BALB/c mice inferred that compound 47 stimulates bone anabolism as evident from histological and gene expression studies at 5 mg. kg-1. day-1 dose. Furthermore, structural activity relationship (SAR) and pharmacokinetic studies suggest compound 47 as a BMP2 upregulator and a potential bone anabolic lead for combating future bone metabolic disorders.


Assuntos
Benzopiranos , Osteogênese , Camundongos , Animais , Regulação para Cima , Benzopiranos/metabolismo , Quinazolinonas/farmacologia , Quinazolinonas/metabolismo , Proteína Morfogenética Óssea 2/metabolismo , Osteoblastos/metabolismo , Indóis/metabolismo , Diferenciação Celular
7.
Molecules ; 27(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36144705

RESUMO

Marine sponges continue to attract remarkable attention as one of the richest pools of bioactive metabolites in the marine environment. The genus Smenospongia (order Dictyoceratida, family Thorectidae) sponges can produce diverse classes of metabolites with unique and unusual chemical skeletons, including terpenoids (sesqui-, di-, and sesterterpenoids), indole alkaloids, aplysinopsins, bisspiroimidazolidinones, chromenes, γ-pyrones, phenyl alkenes, naphthoquinones, and polyketides that possessed diversified bioactivities. This review provided an overview of the reported metabolites from Smenospongia sponges, including their biosynthesis, synthesis, and bioactivities in the period from 1980 to June 2022. The structural characteristics and diverse bioactivities of these metabolites could attract a great deal of attention from natural-product chemists and pharmaceuticals seeking to develop these metabolites into medicine for the treatment and prevention of certain health concerns.


Assuntos
Produtos Biológicos , Naftoquinonas , Policetídeos , Poríferos , Alcenos/metabolismo , Animais , Benzopiranos/metabolismo , Produtos Biológicos/química , Alcaloides Indólicos/química , Naftoquinonas/metabolismo , Preparações Farmacêuticas/metabolismo , Policetídeos/metabolismo , Poríferos/química , Pironas/metabolismo , Terpenos/metabolismo , Terpenos/farmacologia
8.
Appl Biochem Biotechnol ; 194(12): 5702-5716, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35802237

RESUMO

Monascus species are the producers of Monascus azaphilone pigments (MonAzPs) and lipid-lowering component Monacolin K, which have been widely used as food colorant and health products. In this study, silent information regulator 2 (Sir2) homolog (MrSir2) was characterized, and its impacts on the development and MonAzPs production of Monascus ruber were evaluated. Enzyme activity test in vitro showed that MrSir2 was an NAD+-dependent histone deacetylase. Compared to WT, Δmrsir2 strain accumulated more acetylated lysine residues of histone H3 subunit during its vegetative growth phase, and it exhibited accelerated mycelial aging, more spores, increased resistance to oxidative stress, and more MonAzPs production. RNA-Seq-based transcriptome analysis revealed that MrSir2 mainly regulated the gene expression in macromolecular metabolism such as carbohydrates, proteins, and nucleotides, as well as genes encoding cell wall synthesis and cell membrane component, indicating that MrSir2 probably facilitates the metabolic transition from the primary growth phase to the mycelial aging. Taken together, MrSir2 mainly targets H3 subunit at the vegetative growth phase and affects the development of M. ruber and MonAzPs production.


Assuntos
Monascus , Monascus/metabolismo , Pigmentos Biológicos , Benzopiranos/metabolismo
9.
Sci Rep ; 12(1): 203, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997073

RESUMO

Burkholderia pseudomallei is a saprophytic bacterium endemic throughout the tropics causing severe disease in humans and animals. Environmental signals such as the accumulation of inorganic ions mediates the biofilm forming capabilities and survival of B. pseudomallei. We have previously shown that B. pseudomallei responds to nitrate and nitrite by inhibiting biofilm formation and altering cyclic di-GMP signaling. To better understand the roles of nitrate-sensing in the biofilm inhibitory phenotype of B. pseudomallei, we created in-frame deletions of narX (Bp1026b_I1014) and narL (Bp1026b_I1013), which are adjacent components of a conserved nitrate-sensing two-component system. We observed transcriptional downregulation in key components of the biofilm matrix in response to nitrate and nitrite. Some of the most differentially expressed genes were nonribosomal peptide synthases (NRPS) and/or polyketide synthases (PKS) encoding the proteins for the biosynthesis of bactobolin, malleilactone, and syrbactin, and an uncharacterized cryptic NRPS biosynthetic cluster. RNA expression patterns were reversed in ∆narX and ∆narL mutants, suggesting that nitrate sensing is an important checkpoint for regulating the diverse metabolic changes occurring in the biofilm inhibitory phenotype. Moreover, in a macrophage model of infection, ∆narX and ∆narL mutants were attenuated in intracellular replication, suggesting that nitrate sensing contributes to survival in the host.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Produtos Biológicos/metabolismo , Burkholderia pseudomallei/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Proteínas de Bactérias/genética , Benzopiranos/metabolismo , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Lactonas/metabolismo , Viabilidade Microbiana , Mutação , Transcrição Gênica
10.
Chem Biodivers ; 19(1): e202100599, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34786830

RESUMO

A new series of imino-2H-chromene derivatives were rationally designed and synthesized as novel multifunctional agents against Alzheimer's disease. A set of phenylimino-2H-chromenes as well as the newly synthesized iminochromene derivatives were evaluated as BACE1, acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) inhibitors. The results indicated that among the iminochromene set, 10c bearing fluorobenzyl moiety was the most potent BACE1 inhibitor with an IC50 value 6.31 µM. In vitro anti-cholinergic activities demonstrated that compound 10a bearing benzyl pendant was the best inhibitor of AChE (% inhibition at 30 µM=24.4) and BuChE (IC50 =3.3 µM). Kinetic analysis of compound 10a against BuChE was also performed and showed a mixed-type inhibition pattern. The neuroprotective assessment revealed that compound 11b, a phenylimino-2H-chromene derivative with hydroxyethyl moiety, provided 32.3 % protection at 25 µM against Aß-induced PC12 neuronal cell damage. In addition, docking and simulation studies of the most potent compounds against BACE1 and BuChE confirmed the experimental results.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Benzopiranos/química , Inibidores da Colinesterase/síntese química , Desenho de Fármacos , Fármacos Neuroprotetores/metabolismo , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Animais , Apoptose/efeitos dos fármacos , Benzopiranos/metabolismo , Benzopiranos/farmacologia , Benzopiranos/uso terapêutico , Sítios de Ligação , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Domínio Catalítico , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Cinética , Simulação de Acoplamento Molecular , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Células PC12 , Ratos
11.
J Enzyme Inhib Med Chem ; 36(1): 1798-1809, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34348556

RESUMO

Identifying isoform-specific inhibitors for closely related kinase family members remains a substantial challenge. The necessity for achieving this specificity is exemplified by the RSK family, downstream effectors of ERK1/2, which have divergent physiological effects. The natural product, SL0101, a flavonoid glycoside, binds specifically to RSK1/2 through a binding pocket generated by an extensive conformational rearrangement within the RSK N-terminal kinase domain (NTKD). In modelling experiments a single amino acid that is divergent in RSK3/4 most likely prevents the required conformational rearrangement necessary for SL0101 binding. Kinetic analysis of RSK2 association with SL0101 and its derivatives identified that regions outside of the NTKD contribute to stable inhibitor binding. An analogue with an n-propyl-carbamate at the 4" position on the rhamnose moiety was identified that forms a highly stable inhibitor complex with RSK2 but not with RSK1. These results identify a SL0101 modification that will aid the identification of RSK2 specific inhibitors.


Assuntos
Benzopiranos/síntese química , Monossacarídeos/síntese química , Inibidores de Proteínas Quinases/síntese química , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Sequência de Aminoácidos , Benzopiranos/metabolismo , Carbamatos/química , Humanos , Cinética , Modelos Moleculares , Monossacarídeos/metabolismo , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/metabolismo , Ramnose/química , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Relação Estrutura-Atividade
12.
Molecules ; 26(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208750

RESUMO

Entamoeba histolytica (protozoan; family Endomoebidae) is the cause of amoebiasis, a disease related to high morbidity and mortality. Nowadays, this illness is considered a significant public health issue in developing countries. In addition, parasite resistance to conventional medicinal treatment has increased in recent years. Traditional medicine around the world represents a valuable source of alternative treatment for many parasite diseases. In a previous paper, we communicated about the antiprotozoal activity in vitro of the methanolic (MeOH) extract of Ruta chalepensis (Rutaceae) against E. histolytica. The plant is extensively employed in Mexican traditional medicine. The following workup of the MeOH extract of R. chalepensis afforded the furocoumarins rutamarin (1) and chalepin (2), which showed high antiprotozoal activity on Entamoeba histolytica trophozoites employing in vitro tests (IC50 values of 6.52 and 28.95 µg/mL, respectively). Therefore, we offer a full scientific report about the bioguided isolation and the amebicide activity of chalepin and rutamarin.


Assuntos
Furocumarinas/isolamento & purificação , Ruta/metabolismo , Amebicidas/isolamento & purificação , Amebicidas/farmacologia , Antiprotozoários/farmacologia , Benzopiranos/metabolismo , Entamoeba histolytica/efeitos dos fármacos , Entamoeba histolytica/patogenicidade , Furocumarinas/farmacologia , Concentração Inibidora 50 , Medicina Tradicional , México , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia
13.
Eur J Med Chem ; 223: 113658, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34175542

RESUMO

Opioid analgesics are highly effective painkillers for the treatment of moderate or severe pain, but they are associated with a number of undesirable adverse effects, including the development of tolerance, addiction, constipation and life-threatening respiratory depression. The development of new and safer analgesics with innovative mechanisms of action, which can enhance the efficacy in comparison to available treatments and reduce their side effects, is urgently needed. The sigma-1 receptor (σ1R), a unique Ca2+-sensing chaperone protein, is expressed throughout pain-modulating tissues and affects neurotransmission by interacting with different protein partners, including molecular targets that participate in nociceptive signalling, such as the µ-opioid receptor (MOR), N-methyl-d-aspartate receptor (NMDAR) and cannabinoid 1 receptor (CB1R). Overwhelming pharmacological and genetic evidence indicates that σ1R antagonists induce anti-hypersensitive effects in sensitising pain conditions (e.g. chemically induced, inflammatory and neuropathic pain) and enhance opioid analgesia but not opioid-mediated detrimental effects. It has been suggested that balanced modulation of MORs and σ1Rs may improve both the therapeutic efficacy and safety of opioids. This review summarises the functional profiles of ligands with mixed MOR agonist and σ1R antagonist activities and highlights their therapeutic potentials for pain management. Dual MOR agonism/σ1R antagonism represents a promising avenue for the development of potent and safer analgesics.


Assuntos
Analgésicos Opioides/química , Receptores Opioides delta/antagonistas & inibidores , Receptores Opioides mu/agonistas , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/metabolismo , Analgésicos Opioides/uso terapêutico , Benzopiranos/química , Benzopiranos/metabolismo , Humanos , Ligantes , Dor/tratamento farmacológico , Piperazinas/química , Piperazinas/metabolismo , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo , Receptores sigma/antagonistas & inibidores , Receptores sigma/metabolismo , Receptor Sigma-1
14.
Eur J Med Chem ; 222: 113603, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34126456

RESUMO

We reported three distinct series of novel benzothiopyranones, derived from an active metabolite (M-1) of anti-TB agent 6b. These small molecules were evaluated for their biological activities against a range of Mycobacterium tuberculosis (M. tuberculosis) strains. Preliminary druggability evaluation demonstrated that M-1 showed good aqueous solubility and hepatocyte stability. Benzothiopyranones with acyl, sulfonyl and phosphoryl groups exhibited potent in vitro inhibitory activity against M. tuberculosis H37Rv and low cytotoxicity. In particular, compound 3d, containing a benzoate fragment, displayed marked metabolic stability and potent in vitro activity against drug-resistant tuberculosis clinical strains. Further druggability evaluation based on the identified compounds 3d, 4e and 5b is ongoing for the discovery of promising anti-TB agents.


Assuntos
Amidas/farmacologia , Antituberculosos/farmacologia , Benzopiranos/farmacologia , Ésteres/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Amidas/química , Amidas/metabolismo , Antituberculosos/química , Antituberculosos/metabolismo , Benzopiranos/química , Benzopiranos/metabolismo , Relação Dose-Resposta a Droga , Ésteres/química , Ésteres/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
15.
Cell Chem Biol ; 28(10): 1489-1500.e8, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33989565

RESUMO

Vitamin E exhibits pharmacological effects beyond established antioxidant activity suggesting involvement of unidentified mechanisms. Here, we characterize endogenously formed tocopherol carboxylates and the vitamin E mimetic garcinoic acid (GA) as activators of the peroxisome proliferator-activated receptor gamma (PPARγ). Co-stimulation of PPARγ with GA and the orthosteric agonist pioglitazone resulted in additive transcriptional activity. In line with this, the PPARγ-GA complex adopted a fully active conformation and interestingly contained two bound GA molecules with one at an allosteric site. A co-regulator interaction scan demonstrated an unanticipated co-factor recruitment profile for GA-bound PPARγ compared with canonical PPARγ agonists and gene expression analysis revealed different effects of GA and pioglitazone on PPAR signaling in hepatocytes. These observations reveal allosteric mechanisms of PPARγ modulation as an alternative avenue to PPARγ targeting and suggest contributions of PPARγ activation by α-13-tocopherolcarboxylate to the pharmacological effects of vitamin E.


Assuntos
PPAR gama/metabolismo , Vitamina E/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Benzopiranos/química , Benzopiranos/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Células Hep G2 , Humanos , Ligantes , Simulação de Dinâmica Molecular , PPAR gama/agonistas , Pioglitazona/química , Pioglitazona/metabolismo , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Vitamina E/química , Vitamina E/farmacologia
16.
J Biochem ; 170(2): 229-237, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33752234

RESUMO

The mitotic kinesin Eg5 is a plus-end directed homotetrameric molecular motor essential for the formation of bipolar spindles during cell division. Kinesin Eg5 is overexpressed in cancer cells and hence considered as a target for cancer therapy; the inhibitors specific for Eg5 have been developed as anticancer drugs. In this study, we synthesized a novel functional photoresponsive inhibitor composed of spiropyran and azobenzene derivatives to control Eg5 function with multistage inhibitory activity accompanied by the formation of different isomerization states. The photochromic inhibitor spiropyran-sulfo-azobenzene (SPSAB) exhibited three isomerization states: spiro (SP)-trans, merocyanine (MC)-cis and MC-trans, upon exposure to visible light, ultraviolet and in the dark, respectively. SPSAB-induced reversible changes in the inhibitory activity of ATPase and motor activities correlating with photoisomerization among the three states. Among the three isomerization states of SPSAB, the SP-trans isomer showed potent inhibitory activity at an IC50 value of 30 µM in the basal ATPase assay. MC-trans and MC-cis exhibited less inhibitory activity at IC50 values of 38 and 86 µM, respectively. The results demonstrated that the novel photochromic inhibitor enabled precise control of Eg5 function at three different levels using light irradiation.


Assuntos
Compostos Azo/farmacologia , Benzopiranos/farmacologia , Indóis/farmacologia , Cinesinas/antagonistas & inibidores , Cinesinas/metabolismo , Mitose , Nitrocompostos/farmacologia , Adenosina Trifosfatases/metabolismo , Compostos Azo/química , Compostos Azo/metabolismo , Benzopiranos/química , Benzopiranos/metabolismo , Divisão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Humanos , Indóis/química , Indóis/metabolismo , Isomerismo , Cinesinas/química , Luz , Substâncias Luminescentes/farmacologia , Microtúbulos/metabolismo , Nitrocompostos/química , Nitrocompostos/metabolismo , Ligação Proteica
17.
Bioorg Chem ; 107: 104572, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33418316

RESUMO

Mitochondria play a key role for deciding fate of cells and thus are considered an attractive target for pharmacological interventions focused on containment of myocardial ischemia/reperfusion (I/R) injury. Notably, the activation of mitochondrial potassium (mitoK) channels produces a mild depolarization of mitochondrial membrane, that contributes to reduce the driving force to calcium uptake and prevents the formation of mitochondrial transition membrane pore (MPTP); these events underlie anti-ischemic cardioprotection. However, an ideal mitoK channel opener should possess the fundamental requirement to be delivered at mitochondrial level; therefore, to improve the mitochondrial delivery of a previously characterized spirocyclic benzopyrane F81, new compounds have been developed. The three original triphenylphosphonium (TPP+)-derivatives of F81 (1-3), were evaluated for their cardioprotective activity on both isolated cardiac mitochondria and cardiac H9c2 cell line. Compound 1 was further investigated in an in vivo infarct model. This work confirms that the TPP+ strategy applied to mitoKATP openers could foster mitochondrial delivery and enhance the cardioprotective effects of mitochondrial activators of potassium channels.


Assuntos
Cardiotônicos/síntese química , Canais de Potássio/metabolismo , Animais , Benzopiranos/química , Benzopiranos/metabolismo , Benzopiranos/farmacologia , Benzopiranos/uso terapêutico , Cardiotônicos/metabolismo , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Compostos Organofosforados/química , Canais de Potássio/agonistas , Ratos , Ratos Wistar , Compostos de Espiro/química
18.
Artigo em Inglês | MEDLINE | ID: mdl-33421592

RESUMO

The α-tocopherol-derived long-chain metabolite (α-LCM) α-13'-carboxychromanol (α-13'-COOH) is formed via enzymatic degradation of α-tocopherol (α-TOH) in the liver. In the last decade, α-13'-COOH has emerged as a new regulatory metabolite revealing more potent or even different effects compared with its vitamin precursor α-TOH. The detection of α-13'-COOH in human serum has further strengthened the concept of its physiological relevance as a potential regulatory molecule. Here, we present a new facet on the interaction of α-13'-COOH with macrophage foam cell formation. We found that α-13'-COOH (5 µM) increases angiopoietin-like 4 (ANGPTL4) mRNA expression in human THP-1 macrophages in a time- and dose-dependent manner, while α-TOH (100 µM) showed no effects. Interestingly, the mRNA level of lipoprotein lipase (LPL) was not influenced by α-13'-COOH, but α-TOH treatment led to a reduction of LPL mRNA expression. Both compounds also revealed different effects on protein level: while α-13'-COOH reduced the secreted amount of LPL protein via induction of ANGPTL4 cleavage, i.e. activation, the secreted amount of LPL in the α-TOH-treated samples was diminished due to the inhibition of mRNA expression. In line with this, both compounds reduced the catalytic activity of LPL. However, α-13'-COOH but not α-TOH attenuated VLDL-induced lipid accumulation by 35%. In conclusion, only α-13'-COOH revealed possible antiatherogenic effects due to the reduction of VLDL-induced foam cell formation in THP-1 macrophages. Our results provide further evidence for the role of α-13'-COOH as a functional metabolite of its vitamin E precursor.


Assuntos
Benzopiranos/metabolismo , Ácidos Graxos/metabolismo , Células Espumosas/metabolismo , Lipase Lipoproteica/metabolismo , Macrófagos/metabolismo , Vitamina E/metabolismo , Linhagem Celular , Regulação para Baixo , Células Espumosas/citologia , Humanos , Lipase Lipoproteica/genética , Macrófagos/citologia , RNA Mensageiro/genética
19.
BMC Complement Med Ther ; 21(1): 41, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33478471

RESUMO

BACKGROUND: The latest coronavirus SARS-CoV-2, discovered in China and rapidly spread Worldwide. COVID-19 affected millions of people and killed hundreds of thousands worldwide. There are many ongoing studies investigating drug(s) suitable for preventing and/or treating this pandemic; however, there are no specific drugs or vaccines available to treat or prevent SARS-CoV-2 as of today. METHODS: Fifty-eight fragrance materials, which are classified as allergen fragrance molecules, were selected and used in this study. Docking simulations were carried out using four functional proteins; the Covid19 Main Protase (MPro), Receptor binding domain (RBD) of spike protein, Nucleocapsid, and host Bromodomain protein (BRD2), as target macromolecules. Three different software, AutoDock, AutoDock Vina (Vina), and Molegro Virtual Docker (MVD), running a total of four different docking protocol with optimized energy functions were used. Results were compared with the five molecules reported in the literature as potential drugs against COVID-19. Virtual screening was carried out using Vina, molecules satisfying our cut-off (- 6.5 kcal/mol) binding affinity was confirmed by MVD. Selected molecules were analyzed using the flexible docking protocol of Vina and AutoDock default settings. RESULTS: Ten out of 58 allergen fragrance molecules were selected for further docking studies. MPro and BRD2 are potential targets for the tested allergen fragrance molecules, while RBD and Nucleocapsid showed weak binding energies. According to AutoDock results, three molecules, Benzyl Cinnamate, Dihydroambrettolide, and Galaxolide, had good binding affinities to BRD2. While Dihydroambrettolide and Galaxolide showed the potential to bind to MPro, Sclareol and Vertofix had the best calculated binding affinities to this target. When the flexible docking results analyzed, all the molecules tested had better calculated binding affinities as expected. Benzyl Benzoate and Benzyl Salicylate showed good binding affinities to BRD2. In the case of MPro, Sclareol had the lowest binding affinity among all the tested allergen fragrance molecules. CONCLUSION: Allergen fragrance molecules are readily available, cost-efficient, and shown to be safe for human use. Results showed that several of these molecules had comparable binding affinities as the potential drug molecules reported in the literature to target proteins. Thus, these allergen molecules at correct doses could have significant health benefits.


Assuntos
Alérgenos/química , Alérgenos/imunologia , Tratamento Farmacológico da COVID-19 , COVID-19/imunologia , Odorantes , Perfumes/química , SARS-CoV-2/química , SARS-CoV-2/imunologia , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Alanina/análogos & derivados , Alanina/química , Alanina/metabolismo , Alérgenos/administração & dosagem , Alérgenos/uso terapêutico , Benzopiranos/química , Benzopiranos/metabolismo , Compostos de Benzil/química , Compostos de Benzil/metabolismo , Cinamatos/química , Cinamatos/metabolismo , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Diterpenos/química , Diterpenos/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Perfumes/administração & dosagem , Perfumes/uso terapêutico , Fosfoproteínas/química , Fosfoproteínas/metabolismo , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
20.
Chem Biol Drug Des ; 97(1): 28-40, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32657543

RESUMO

Structure-based virtual screening (SBVS) has served as a popular strategy for rational drug discovery. In this study, we aimed to discover novel benzopyran-based inhibitors that targeted the NS3 enzymes (NS3/4A protease and NS3 helicase) of HCV G3 using a combination of in silico and in vitro approaches. With the aid of SBVS, six novel compounds were discovered to inhibit HCV G3 NS3/4A protease and two phytochemicals (ellagic acid and myricetin) were identified as dual-target inhibitors that inhibited both NS3/4A protease and NS3 helicase in vitro (IC50  = 40.37 ± 5.47 nm and 6.58 ± 0.99 µm, respectively). Inhibitory activities against the replication of HCV G3 replicons were further assessed in a cell-based system with four compounds showed dose-dependent inhibition. Compound P8 was determined to be the most potent compound from the cell-based assay with an EC50 of 19.05 µm. The dual-target inhibitor, ellagic acid, was determined as the second most potent (EC50  = 32.37 µm) and the most selective in its inhibitory activity against the replication of HCV replicons, without severely affecting the viability of the host cells (selectivity index > 6.18).


Assuntos
Ácido Elágico/química , Hepacivirus/enzimologia , Inibidores de Proteases/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Benzopiranos/química , Benzopiranos/metabolismo , Benzopiranos/farmacologia , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos , Ácido Elágico/metabolismo , Ácido Elágico/farmacologia , Flavonoides/química , Flavonoides/metabolismo , Flavonoides/farmacologia , Genótipo , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Humanos , Cinética , Simulação de Acoplamento Molecular , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA